
 
 
 

FOLKLORE THEOREMS, IMPLICIT MAPS AND NEW UNIT ROOT LIMIT THEORY 
 
 

By 
 

Peter C. B. Phillips 
 
 
 

January 2011 
 
 
 
 
 
 
 

COWLES FOUNDATION DISCUSSION PAPER NO. 1781 
 
 
 
 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
 http://cowles.econ.yale.edu/  



Folklore Theorems, Implicit Maps and New Unit Root
Limit Theory∗

Peter C. B. Phillips

Yale University, University of Auckland
University of Southampton & Singapore Management University

December 20, 2010

Abstract

The delta method and continuous mapping theorem are among the most exten-
sively used tools in asymptotic derivations in econometrics. Extensions of these meth-
ods are provided for sequences of functions, which are commonly encountered in appli-
cations, and where the usual methods sometimes fail. Important examples of failure
arise in the use of simulation based estimation methods such as indirect inference.
The paper explores the application of these methods to the indirect inference estima-
tor (IIE) in first order autoregressive estimation. The IIE uses a binding function that
is sample size dependent. Its limit theory relies on a sequence-based delta method
in the stationary case and a sequence-based implicit continuous mapping theorem in
unit root and local to unity cases. The new limit theory shows that the IIE achieves
much more than bias correction. It changes the limit theory of the maximum likeli-
hood estimator (MLE) when the autoregressive coeffi cient is in the locality of unity,
reducing the bias and the variance of the MLE without affecting the limit theory of
the MLE in the stationary case. Thus, in spite of the fact that the IIE is a con-
tinuously differentiable function of the MLE, the limit distribution of the IIE is not
simply a scale multiple of the MLE but depends implicitly on the full binding function
mapping. The unit root case therefore represents an important example of the failure
of the delta method and shows the need for an implicit mapping extension of the
continuous mapping theorem.
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1 Introduction

One of the folklore theorems of statistics is the delta method, a rigorous treatment first
appearing in Cramér’s (1946) treatise although the history of the method is certainly
much more distant. The method appeared in early econometric texts (e.g., Klein, 1953)
and its use in asymptotic derivations in econometrics is now almost universal. Equally
important in econometric asymptotics, especially since the uptake of function space limit
theory in the 1980s, is the continuous mapping theorem whose history also stretches into
antiquity, an early source being the Mann and Wald (1943) article on stochastic order
notation.

Whilst these methods appear almost everywhere in econometrics, there are some cases
where the methods do not apply directly. Particularly important examples arise when a
problem involves sample functions that depend on the sample size or when the quantity
of interest appears in an implicit functional form. In some cases the methods fail but
with some modification can be made to work. In other cases, a new theorem is required
to obtain the limit theory. There appears to be no systematic discussion of these issues in
the literature, although there is some discussion in the statistical literature of extensions
to the continuous mapping theorem for sequences of functions.

The primary goal of the present work was to find the limit distribution of the indirect
inference estimator in a simple first order autoregression. This estimator is effective in
bias correction, which can be a major problem in autoregression, so the method is of
considerable interest in that context. There are also manifestations of this problem and
indirect inference alternatives in continuous time finance in diffusion equation estimation.
In that context, Phillips and Yu (2009) use indirect inference to price contingent claims in
derivative markets and show that this method removes bias and often reduces the variance
of option price estimates that are based on maximum likelihood.

Investigation of the autoregressive model implementation of indirect inference reveals
that the usual delta method gives the correct solutions in stationary and explosive cases
but that the method fails in unit root and near unit root cases. Since the latter cases are
most important in practical work, the failure has major implications. The explanation
for the failure lies partly in the sample size dependence of the functional that defines
the indirect inference estimator, partly in the implicit functional form that the estimator
takes, and partly in the breakdown of linear approximation. All these issues need to be
confronted in order to obtain the correct limit theory.

The problem is of wider significance because of the growing use of simulation based
methods in the construction of extremum estimators in econometrics. Indirect inference
(developed in Smith, 1993, and Gourieroux, Monfort and Renault, 1993) is a primary ex-
ample of such a method. Other examples where sample based functionals arise in econo-
metrics are median unbiased estimation (Andrews, 1992), simulated method of moments
(McFadden, 1989), and simulated scores (Hajivassiliou and McFadden 1998), among a
growing number of other methods. Particularly when a new procedure depends on the
sampling distribution of another estimator, as in the case of median unbiased estimation,
the new limit distribution may be fundamentally affected by the properties of the implied
distributional transformation, much as its finite sample distribution is affected. It is, in
effect, only when the transformation is locally linear in a suitably sized shrinking neigh-
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borhood that the limit distribution follows straightforwardly from usual rules such as the
delta method.

The present paper introduces these issues, provides some discussion and limit results
that extend the delta method and continuous mapping theorem, and applies the ideas in
the context of indirect inference (II) limit theory for the first order autoregression. It is
shown that the II estimator has a new form of limit distribution when the autoregressive
coeffi cient is in the locality of unity. In effect, II not only removes the bias in the maximum
likelihood estimator but also changes its limiting distributional shape in way that reduces
variance. This is an instance where the delta method completely fails in the region of
unity but a suitably extended version of the delta method applies in the stationary case.

The paper is organized as follows. Section 2 provides some new mapping theorems
that extend the usual delta method to sequences of functions and the continuous mapping
theorem to sequences of implicit mappings. Both results are useful in considering simu-
lation based estimation procedures where sample based functionals appear in extremum
estimation problems. Section 3 describes the indirect inference approach and Section 4
analyzes the use of this method in a first order autoregression, derives the analytic form
of the binding function and develops comprehensive asymptotic expansion formulae for
stationary, near unit root and explosive cases. Section 5 derives the limit distribution
of the indirect inference estimator, applying an extended delta method in the stationary
case and an implicit continuous mapping theorem in the unit root and local to unity case,
showing that for these parameters the limit theory is a nonlinear functional of the stan-
dard unit root and near unit root asymptotics. Section 6 concludes and discusses various
extensions. Some new integral asymptotic expansions are given in the Appendix, together
with proofs of all the main results in the paper.

2 Mapping theorems and Examples

2.1 Extending the delta method to sequences of functions

While the ideas underlying the delta method have a long history, it seems that the origi-
nal rigorous development was presented by Cramér (1946). Cramér’s discussion included
moments (p. 353), the limit distribution (p. 366), the multivariate case (p. 358), and more
notably because it is seldom referenced the case where the leading term fails because of
a zero first derivative and the variance is of smaller order than O

(
n−1

)
, leading to possi-

bly nonnormal limit theory and a higher rate of convergence. In the latter case, Cramér
(p. 415) provides an illustration based on the distribution of the multiple correlation coeffi -
cient in the null correlation case, where the limit distribution is chi squared. Some related
failures of standard methods of expansion and linearization were considered by Sargan
(1983). Simple examples of such cases are sometimes mentioned in texts on asymptotic
statistical theory, for instance that of van de Vaart (2000). Functional versions of the
delta method are also commonly used in semiparametric and nonparametric applications.

For the purposes of this paper, it is suffi cient to work in the finite dimensional case.
To fix ideas, we use the framework of van de Vaart (2000, chapter 3). Let Tn be a random
sequence in Rm for which dn (Tn − θ) ⇒ T as n → ∞ for some numerical sequence
dn →∞. In the usual case dn =

√
n and T is Gaussian. Let ϕ : Rm → Rp be a map that
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is continuously differentiable at θ with derivative matrix ϕ′θ. Then

dn (ϕ (Tn)− ϕ (θ))⇒ ϕ′θT. (1)

In effect, dn (ϕ (Tn)− ϕ (θ)) behaves asymptotically as n → ∞ like the linear functional
ϕ′θT, which van de Vaart writes as the linear map ϕ

′
θ (T ) . The validity of the result relies

critically on the validity of a linear approximation at θ asn→∞. The same critical condi-
tion applies in the function space case. In simple applications, the matrix ϕ′θ has full row
rank and the distribution of T is non degenerate in the sense that its support has positive
Lebesgue measure in Rm. Rank deficiencies lead to different rates of convergence and dif-
ferent limit results in the null subspaces. The limit results may be further complicated by
the presence of different rates of convergence in the elements of Tn. Many such examples
arise in econometrics, especially with models involving trend functions of different orders,
such as in systems with cointegrated regressors (Park and Phillips, 1988; Phillips, 1988),
systems with slowly varying trend regressors or nonlinear trends (Phillips, 2007; Pollard
and Radchenko, 2006), and systems with co-explosive processes (Phillips and Magdalinos,
2008; Nielsen, 2009). These types of complications have been extensively studied in time
series econometrics.

But what happens when the function ϕ = ϕn also depends on the sample size n?
Some very important cases of this type arise in econometrics with the use of simulation
based estimators. In this case, an extended delta method for sequences seems well within
reach. I could find no general reference in the statistical literature but such results have
almost certainly been used before in some asymptotic arguments. A formal statement
seems worthwhile.

Consider the special case of a sequence of scalar functions ϕn of a single random
sequence Tn. This case will be suffi cient for our purposes in the present work but can
be substantially generalized. If the functions ϕn are continuously differentiable and their
derivatives ϕ′n behave with regular variation in the vicinity of the limit θ (relative to the
rate of convergence dn of Tn) then we might expect some version of (1) with a rescaled rate
of convergence to hold. The following result is verified by a direct mean value argument.

Theorem 1 Suppose ϕn has continuous derivatives ϕ′n with ϕ
′
n (θ) 6= 0 for all n. Suppose

also that the sequence {ϕ′n} is asymptotically locally relatively equicontinuous at θ in the
sense that given δ > 0 there exists a sequence sn →∞ such that sndn → 0 and for which as
n→∞

sup
|sn(x−θ)|<δ

∣∣∣∣ϕ′n (x)− ϕ′n (θ)

ϕ′n (θ)

∣∣∣∣→ 0. (2)

Then
dn

ϕ′n (θ)
(ϕn (Tn)− ϕn (θ))⇒ T. (3)

As the proof of theorem 1 shows, the conditions effectively require that we may stan-
dardize and center the sequence of functions ϕn (Tn) of Tn so that dn

ϕ′n(θ) (ϕn (Tn)− ϕn (θ))
is asymptotically linear in Tn in a wide enough neighborhood of θ. If this linearization con-
dition fails, then we need to take further shape characteristics into account in determining
the limit theory for ϕn (Tn) , just as in the usual delta method asymptotics.
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According to the definition of asymptotic local relative equicontinuity, the shrinking
neighborhood system of θ may depend on ϕn in order that (2) holds. In particular, the
condition requires the existence of some shrinking neighborhood system

N sn
δ (θ) = {x ∈ R : |sn (x− θ)| < δ, δ > 0} , (4)

for which (2) holds. So the rate of shrinkage around θ generally depends on the asymptotic
behavior of the sequence of functions ϕn. The width of N

sn
δ (θ) is O

(
s−1
n

)
and must be

large enough to include the local region around θ of Op
(
d−1
n

)
which contains Tn, at least

as n→∞, which is assured by the rate condition sn/dn → 0.
The requirement (2) is stronger than the continuity of ϕ′n at θ and different from

equicontinuity of {ϕ′n} at θ, which requires a fixed rather than shrinking neighborhood of
θ and ignores relative behavior. There is no requirement in the theorem that either ϕn (x)

or ϕ′n (x) converge. However, as a consequence of (2), the ratio ϕ′n(x)−ϕ′n(θ)
ϕ′n(θ) converges to

zero uniformly in a local shrinking neighborhood of θ. Notably, the rate of convergence
of ϕn (Tn) − ϕn (θ) is modified by the nonrandom sequence ϕ′n (θ) . When ϕn = ϕ for
all n, the limit result reduces to the usual delta method formula where ϕ′n (θ) = ϕ′ (θ)
is a simple slope coeffi cient. In the general case, the role of ϕ′n (θ) changes to that of
a slope coeffi cient combined with a rate of convergence adjustment that takes account
of the dependence of the sequence ϕn on n. Just as the usual delta method requires a
non-degenerate slope, theorem 1 also requires that ϕ′n (θ) 6= 0, at least for large enough
n. If this condition does not hold, then a higher order version of the result (3) may hold
(see Example 3 and the discussion below).

Example 2 Consider the following sequence of functions

ϕn (x) = an−β sin (nαx) , ϕ′n (x) = anα−β cos (nαx) ,

where a is a constant and α is such that nα

dn
→ 0. Suppose that dnTn ⇒ T as n → ∞

for some sequence dn → ∞, so that Tn →p 0. Observe that ϕ′n (0) = anα−β, and that
the sequence {ϕ′n} is locally relatively equicontinuous in the shrinking neighborhood x ∈
N sn
δ = {(−δ/sn, δ/sn) : nα/sn → 0} for some δ > 0 because

sup
|x−y|<δ/sn

|cos (nαx)− cos (nαy)| ≤ nα δ
sn
→ 0,

provided nα/sn → 0. Theorem 1 then implies that dn
nα−β

ϕn (Tn)⇒ aT. Alternatively, since
nαTn →p 0 we have the same result by the direct calculation

dn
nα−β

ϕn (Tn) =
a sin (nαTn)

nαTn
dnTn ⇒ aT.

In this example the numerical sequence sn defining the shrinking neighborhood system N sn
δ

depends on the form of ϕn because of the condition that nα/sn → 0, so the neighborhood
shrinks faster than n−α. Since nα

dn
→ 0 we can choose the width of the shrinking neigh-

borhood of θ = 0 in such a way that n
α

sn
+ sn

dn
→ 0, for example by setting sn = nα logKn

where Kn = dn/n
α. Note that neither ϕn (x) nor ϕ′n (x) converges.
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In the above example if the parameter α in ϕn (x) is such that nα

dn
→ c ∈ (0,∞) ,

then the continuous mapping theorem applies, rather than an extended delta method. In
particular,

nβϕn (Tn) = a sin

(
nα

dn
dnTn

)
⇒ a sin (cT ) .

The extended delta method fails because higher order terms matter and (2) fails. We can
use a full Taylor development to get the same limit result. In particular,

nβϕn (Tn) = nβ
∞∑
j=0

ϕ
(j)
n (0)T jn
j!

=
∞∑
k=0

(−1)k nα(2k+1) (dnTn)2k+1

d2k+1
n (2k + 1)!

=
∞∑
k=0

(−1)k {c+ o (1)}2k+1 (dnTn)2k+1

(2k + 1)!
, (5)

and all terms in the series contribute to the limit distribution. Using the uniform con-
vergence of the series and the Skorohod representation on a probability space for which
dnT →a.s. T , we deduce that on this space

nβϕn (Tn)→a.s.

∞∑
k=0

(−1)k c2k+1T 2k+1

(2k + 1)!
= sin (cT ) , (6)

so that weak convergence holds on the original space. Note that when nα

dn
→ c > 0 and

sn
dn
→ 0, it follows that nαδ

sn
→∞ for all δ > 0, from which we may deduce that for large

enough n
sup
|x|<δ/sn

|cos (nαx)− 1| = 1.

So asymptotic local relative equicontinuity of ϕ′n (x) fails in this case.

Example 3 As in Example 2, suppose dnTn ⇒ T as n→∞ for some dn →∞. Consider
the sequence

ϕn (x) = an−β cos
(
nαx+ bn−γ

)
, ϕ′n (x) = −anα−β sin

(
nαx+ bn−γ

)
,

where a and b are non-zero constants, α is such that n
α+γ

dn
→ 0, and γ > 0. Now

ϕ′n (0) = −anα−β sin
(
bn−γ

)
= −abnα−β−γ

{
1 + o

(
n−1

)}
,

so that ϕ′n (0)→ 0 as n→∞ if α− β − γ < 0. Then

ϕ′n (x)− ϕ′n (0)

ϕ′n (0)
=

sin (nαx+ bn−γ)− sin (bn−γ)

sin (bn−γ)

= b−1
{
nγ sin

(
nαx+ bn−γ

)
− nγ sin

(
bn−γ

)} {
1 + o

(
n−1

)}
and

sup
|x|<δ/sn

∣∣nγ sin
(
nαx+ bn−γ

)
− nγ sin

(
bn−γ

)∣∣ ≤ nα+γ δ

sn
→ 0.
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So {ϕ′n} is locally relatively equicontinuous as n → ∞ in the shrinking neighborhood
x ∈ N sn

δ = {(−δ/sn, δ/sn) : nα+γ/sn → 0} for δ > 0. Theorem 1 then implies that

dn
nα−β−γ

(ϕn (Tn)− ϕn (θ))⇒ −abT.

Alternatively, since nαTn →p 0 we have by Taylor expansion

dn
nα−β−γ

(
ϕn (Tn)− a cos

b

nθ

)
= −absin (bn−γ)

bn−γ
dnTn {1 + op (1)} ⇒ −abT.

Again, sn depends on the form of ϕn because of the condition that nα+γ/sn → 0, so the
neighborhood shrinks faster than O (n−α−γ) . The width of N sn

δ can be chosen by setting
sn = nα+γ logKn where Kn = dn/n

α+γ . In this example since b 6= 0 and γ > 0, the
derivative ϕ′n (0) converges to zero as n→∞ when α < β + γ.

When b = 0 in the above example, we have ϕ′n (0) = 0 and the (first order) extended
delta method does not apply. But a higher order version is applicable. In particular, a
higher order Taylor calculation leads to the result

d2
n

n2α−β (ϕn (Tn)− a)⇒ −a
2
T 2.

Example 4 Consider the sequence

Zn = ϕn (Yn) =
enYn√

n (1 + Yn)
, where Yn = X2

n and
√
nXn ⇒ X.

So Yn →p 0 and nYn ⇒ X2 =: Y. Then by direct transformation and neglecting op (1)
terms we have by the continuous mapping theorem

√
nZn =

√
nϕn (Yn) = enYn

{
1 +Op

(
n−1

)}
⇒ eY .

The usual delta method fails because the first derivative ϕ′n (0) = n1/2 + O
(
n−1/2

)
is

unbounded, linear approximation breaks down and higher order derivatives of ϕn (y) are
important. The full Taylor development yields

√
nZn =

∞∑
j=0

ϕ
(j)
n (0) (nYn)j

nj−1/2j!
,

and noting that ϕ(j)
n (0) = nj−1/2

{
1 +O

(
n−1

)}
we obtain by an argument similar to

(5)-(6)

√
nZn =

√
nϕn (Yn) =

∞∑
j=0

g
(j)
n (0) (nYn)j

nj−1/2j!
=

∞∑
j=0

(nYn)j

j!
= enYn ⇒ eY ,

leading again to a continuous map. The full Taylor development gives the correct result
but relies on the fact that the function ϕn (y) = eny√

n(1+y)
is analytic over y ∈ [0,∞).
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2.2 Extending the continuous mapping theorem to implicit maps

If Xn is a random sequence for which Xn ⇒ X on a certain probability space and g is
a measurable mapping on that space that is continuous except for a set Dg for which
the limit measure P (X ∈ Dg) = 0, then Yn = g (Xn) ⇒ g (X) . There are well known
extensions of this theorem that hold for sequences of functions gn for which gn (Xn) ⇒
g (X) . The result is to be expected if gn converges uniformly to g. Topsoe (1967) gives
a simple and powerful result due to Rubin (undated) according to which if the set E =
{x : gn (xn)→ g (x) ∀xn → x} has probability one under the limit measure P , then Xn ⇒
X implies gn (Xn) ⇒ g (X) . See Billingsley (1968) and van de Vaart and Wellner (2000,
theorem 1.11.1) for a precise statement, related results and some discussion. The Rubin
condition corresponds to a form of asymptotic equicontinuity of {gn} almost everywhere
under the limit measure - see van de Vaart and Wellner (2000) and Sweeting (1986). For
probability measures on R, if E = R and the functions gn are continuous and converge
uniformly to g, then gn (xn) → g (x) ∀xn → x and P (E) = 1, so Rubin’s condition is
assured by uniform convergence on compact sets of R.

Our interest in the current work concerns the limit distribution of random sequences
that are determined inversely by sequences of equations of the form

Xn = fn (Yn) , (7)

or implicitly by sequences of functions such as

hn (Xn, Yn) = 0. (8)

To my knowledge, there are no limit results for such implicitly defined sequences in the
literature. However, given the Rubin-Topsoe result, a limit theory would be expected
provided a sequence of globally unique inverse functions exists for (7) and a correspond-
ing sequence of globally unique implicit functions exists for (8) and these sequences are
asymptotically equicontinuous in the Rubin sense. .

Conditions for global inverse and global implicit functions have been determined in the
mathematics literature since Hadamard (1906) and discussed in economics since Samuel-
son (1953). Global results of this type are now known for quite general functions on
normed spaces (see, for example, Cristea, 2007; and Sandberg, 1980). A variety of condi-
tions can be used to ensure univalence, including monotonicity and P matrix conditions
on the Jacobian (see Parthasarathy, 1983, for a review of results up to the early 1980s.)
For present purposes in this paper, it will be suffi cient to employ results for the real line,
where monotonicity is a suffi cient condition. The following result uses a one dimensional
global implicit function theorem (Ge and Wang, 2002) and will often be convenient in
econometric applications. It has been extended by Zhang and Ge (2006) using a Ger-
schgorin bound condition on the Jacobian to give a global implicit function theorem for
mappings in Euclidean spaces of arbitrary dimension.

Lemma 5 Assume f : Rm+1 → R is continuously differentiable and there exists a con-
stant d > 0 such that

∣∣∣ ∂∂yf (x, y))
∣∣∣ > d for all (x, y) ∈ Rm×R. Then there exists a unique

continuously differentiable function g : Rm → R such that f (x, g (x)) = 0.
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For such an implicit function f with unique solution y = g (x) , an implied con-
tinuous mapping theorem follows immediately, viz. Yn = g (Xn) ⇒ g (X) whenever
Xn ⇒ X. More generally, suppose we have a sequence of continuously differentiable im-

plicit functions fn (x, y) which satisfy the monotonicity condition
∣∣∣ ∂∂yfn (x, y))

∣∣∣ > d for

all (x, y) ∈ Rm × R and some d > 0. Then, there exists a corresponding sequence of
unique continuously differentiable solution functions gn. If these functions satisfy the Ru-
bin asymptotic equicontinuity condition, then Xn ⇒ X implies gn (Xn) ⇒ g (X) . An
application of this type of limit theory is given later in the paper in deriving indirect
inference limit theory for the unit root case.

Example 6 A nontrivial example is given by the function

x = y + ey =: h(y) (9)

whose unique solution is given by

y = g (x) := x−W (ex) (10)

where W is Lambert’s W function (i.e. the solution of z = WeW ). The function (9) is
graphed in Fig. 1 and is monotonic with derivative bounded above zero. It follows directly
that if Xn ⇒ X then

Yn = g (Xn)⇒ g (X) = X −W
(
eX
)
.

Now consider the sequence of functions hn (y) = y+
∑n

j=0 y
j/j! which converges uniformly

on compact subsets of R to h (y) = y + ey. Corresponding to {hn} for large enough n we
have a sequence of unique inverse functions {gn} which converges uniformly on compact
subsets of R to the continuous function g (y) = x − W (ex) . Then, Xn ⇒ X implies
Yn = gn (Xn)⇒ g (X) .

5 4 3 2 1 0 1 2 3 4 5

50

100

150

y

x

Fig. 1 Graph of x = y + ey whose solution y = x−W (ex) involves Lambert’s W
function.
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3 Indirect Inference Estimation

The idea of indirect inference is to use simulated data to determine characteristics such as
population moments and to map their dependence on underlying parameters of interest in
a manner that is useful in econometric estimation and inference. Like the delta method,
this idea has a long history1. Practical implementation became possible with advances
in computational capability that enabled a suffi ciently large number of data generations
and replications of a statistical procedure to capture parameter dependencies well enough
for them to be used to improve estimation and inference. Typical uses are to estimate
parameters indirectly via their dependence on other parameters, which may be easier
to estimate, or to use the simulations indirectly for calibration purposes, for example in
measuring and correcting bias in estimation.

To fix ideas, a parametric model is simulated to produceH data trajectories
{
ỹh(θ)

}H
h=1

for a given parametric value θ. The number of observations in each trajectory ỹh(θ) is
chosen to be the same as the number of observations in the observed data set to ensure
finite sample calibration accuracy. Suppose Qn (β; y) is an objective function constructed
from the actual data (y) for the estimation of some pseudo parameter β by means of the
extremum criterion

β̂n = arg min βQn(β; y).

The corresponding estimator based on the hth simulated path for some given θ is

β̃hn (θ) = arg min βQn(β; ỹh(θ)).

Indirect inference estimation of the original parameter θ proceeds by way of calibrating θ
to β̂n (or some function of β̂n) according to an additional criterion of the form

θ̆n,H = arg min θ

∥∥∥∥∥β̂n − 1

H

H∑
h=1

β̃hn (θ)

∥∥∥∥∥ , (11)

for some metric ‖·‖ . As H → ∞, we anticipate that H−1
∑H

h=1 β̃
h
n (θ) →p Eβ̃hn (θ) =:

bn (θ). Since H can be made arbitrarily large in implementation, the procedure effectively
amounts to calibrating bn (θ), which is called the binding function, so that

θ̆n = arg min θ

∥∥∥β̂n − bn (θ)
∥∥∥ . (12)

If bn (θ) is invertible, then we have θ̆n = b−1
n

(
β̂n

)
=: fn

(
β̂n

)
. The estimator θ̂n is

therefore determined indirectly by way of the binding function bn (θ) and the estimator
β̂n. In some applications of indirect inference, such as the one considered in the next
section of the paper, the pseudo parameter β corresponds with the original parameter θ
and the procedure seeks to adjust the estimator according to some aspect of its sampling
properties such as its mean or median.

1For instance, Durbin indicated early consideration of such possibilities in an ET Interview (Phillips,
1988) and Sargan (1976) mentions ideas of Barnard related to the bootstrap, both in the 1950s.
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Importantly, the dependence of the estimator θ̆n on the data is via β̂n and the sequence
of binding functions bn. In general, bn depends on the finite sample distribution of the
data through the exact finite sample functional involved in the criterion. In the case
above, the functional is the finite sample mean function Eβ̃hn (θ) . But it could also be
another characteristic of the distribution like the median. The implicit dependence of θ̆n
on the sequence of functions bn means that the asymptotic distribution of θ̆n cannot be
deduced simply by the delta method. As shown above, it is necessary to take into account
the properties of the sequence bn in determining the rate of convergence and the limit
theory. The remainder of this paper will look carefully at this problem in a special case
that shows how the mapping sequence can play a critical role in shaping the limit theory.

4 First Order Autoregression

4.1 Bias and bias correction

Suppose we wish to estimate the parameter ρ in the simple autoregression

yt = ρyt−1 + ut, t = 1, ..., n (13)

from observations y = {yt}nt=0 where ut is iid N
(
0, σ2

)
. Various conditions may be placed

on the initial value y0 and these affect finite sample behavior and may also affect the limit
theory when ρ is in the neighborhood of unity or in the explosive region (see Phillips and
Magdalinos, 2010, for a recent treatment and the references therein). Such initialization
effects are not the concern of the present paper, so we will simply assume that y0 = 0.
However, the indirect inference approach is easily adapted to take into account different
initializations. Also, it is often convenient to focus on the case where ρ > 0 since analogous
mirror image results hold for ρ < 0.

Standard estimation procedures such as maximum likelihood (ML) and least squares
(LS) produce downward biased coeffi cient estimators of ρ in finite samples when ρ > 0.
Let ρ̂n be the ML estimate of ρ under Gaussianity, assuming the initialization y0 is fixed.
White (1961) and Shenton and Johnson (1965; hereafter SJ) gave asymptotic expansions
of the bias in terms of powers of n−1 as n → ∞. Different expansions were obtained for
the case |ρ| < 1 and the case ρ = 1. In more recent work, Shenton and Vinod (1995)
gave integral forms for the bias function for stationary and unit root ρ and developed a
high order closed expression for the asymptotic expansion of the bias. Some related work
giving analytic moment expressions is contained in Vinod and Shenton (1996) again for
these parameter values. Extensions to models with non-Gaussian errors were derived in
Bao (2007) for the stationary case. All of this research has a bearing on the estimation
of continuous time models from discrete data, where similar problems of estimation bias
for the mean reversion parameter arise but can be more severe (Tang and Chen, 2009;
Yu, 2009). This bias is particularly important because of its implications for derivative
pricing in finance (Phillips and Yu, 2005; 2009).

The next section develops comprehensive bias expressions for ρ̂n and asymptotic rep-
resentations that cover stationary, unit root and explosive ρ. This development is needed
because the asymptotic formulae required to characterize the limit theory of the indirect
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inference estimator of ρ rely on full analytic specification of the binding function over all
potential values of ρ. Fig. 2 shows the bias function E(ρ̂n|ρ) − ρ of the ML estimate of
ρ in the Gaussian model (13) for various sample sizes n. The downward bias for ρ > 0 is
evidently greatest near unity and rapidly diminishes as ρ exceeds unity. The bias func-
tion is clearly very nonlinear, as noted by MacKinnon and Smith (1998), who performed
simulations in the case of an AR(1) model with a fitted intercept. Most importantly, it
has a rapidly changing derivative in the vicinity of unity.

Fig. 2 The exact bias function bn (ρ)− ρ = E(ρ̂n|ρ)− ρ of the ML estimator ρ̂n for
various n based on (19) and (20).

The indirect inference method for fitting ρ takes this bias function into account and
was explored in Gouriéroux et al (2000, 2010) by Monte Carlo. As explained above, the ap-
proach uses simulations to calibrate the bias function and requires neither an explicit form
of the bias nor a bias expansion formula. The simulation results reported in Gouriéroux
et al (2000) show that the indirect inference method works as well as the median unbiased
estimator of Andrews (1993) when H = 15, 000 and the calibration estimator is the MLE.
Both methods are dependent on the validity of the assumed data distribution for correct
calibration through the finite sample binding formula.

As in (12), when the number of replications H → ∞ the indirect inference estimator
of ρ satisfies

ρ̆n = arg min ρ

∣∣∣ρ̂n − E (ρ̃hn (ρ)
)∣∣∣ = arg min ρ |ρ̂n − bn (ρ)| , (14)

where bn(ρ) = E(ρ̃hn (ρ)) is the binding function for the MLE ρ̂n. When bn is invertible

ρ̆n = b−1
n (ρ̂n) := fn(ρ̂n). (15)

12



From SJ (1965), the binding function is known to have the following asymptotic expansion
as n→∞

bn(ρ) =


ρ− 2ρ

n +O
(
n−2

)
|ρ| < 1

ρ− 1.7814
n +O

(
n−2

)
ρ = 1

, (16)

which is evidently discontinuous at ρ = 1. The numerical value −1.7814 is the mean of the
limit distribution of n (ρ̂n − 1) and bias persists in the limit when ρ = 1. The discontinuity
in (16) reflects the discontinuity in the asymptotic distribution theory around unity and
manifests this deeper issue in the asymptotics. In contrast, the binding function bn(ρ)
itself is continuous and indeed continuously differentiable for all n, as is apparent in Fig. 3a.

Fig. 3b shows the binding function for n = 5, 000 in a narrow band around unity to
indicate the behavior of the function in this vicinity for very large values of n. The function
is below the 45o line for all ρ with a slope that is less than unity for stationary ρ but
that increases and exceeds unity for ρ around unity while rapidly returning to virtually
coincide with the 45o line for explosive ρ. In order to accomplish this smooth transition,
the derivative of the binding function is below unity for ρ < 1, virtually unity for ρ > 1
but greater than unity in the immediate vicinity of ρ = 1. As is apparent from Figs. 3a
and 3b, the binding function bn(ρ) is monotone. But Fig. 2 shows that the bias function
bn (ρ) − ρ has a derivative that quickly changes sign in the neighborhood of unity. So a
linear approximation to bn (ρ) is completely inadequate around unity even for very large
n.

Fig. 3a Graph of the binding function bn (ρ) of the MLE ρ̂n for n = 100.
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Fig. 3b Graph of the binding function bn (ρ) of the MLE ρ̂n around unity for n = 5000.

Since the inverse binding function fn is continuously differentiable with a non zero
first derivative at ρ, routine application of the delta method suggests that

dn (ρ̆n − ρ) ∼ f ′n(ρ)dn (ρ̂n − ρ) . (17)

When |ρ| < 1, we have dn =
√
n and by standard theory

√
n (ρ̂n − ρ)⇒ N

(
0, 1− ρ2

)
. In

this case, as shown in the following section, f ′n(ρ) = 1 + O
(
n−1

)
and, given δ > 0 and a

sequence sn →∞ such that sn/
√
n→ 0, we have

sup
|sn(x−ρ)|<δ

∣∣∣∣f ′n(x)− f ′n(ρ)

f ′n(ρ)

∣∣∣∣→ 0, as n→∞.

Then by theorem 1 it follows that
√
n (ρ̆n − ρ)⇒ N

(
0, 1− ρ2

)
. The main effect of indirect

inference in the stationary AR(1) case therefore is to provide a finite sample bias correction
to the estimator, while the asymptotic distribution of ρ̆n is identical to the MLE.

However, when ρ is in the local vicinity of unity as n→∞, the linear representation
(17) breaks down and it is necessary to take into account the precise features of the binding
function bn (ρ) around unity to determine the correct limit theory. The asymptotics are
complex and require much more detailed asymptotic representations of bn (ρ) . These are
provided in the following sections.

4.2 The binding function formula

The following theorem extends a result in Shenton and Vinod (1996; hereafter SV). It
describes the binding function for the regions |ρ| ≤ 1 and |ρ| > 1.

14



Theorem 7 For model (13) the binding function bn(ρ) = E(ρ̂n) for the ML estimator ρ̂n
is given by

bn(ρ) =

 ρ+ 1
2
∂
∂ρ

{∫ 1
0 x

(n−5)/2
(
1− ρ2x2

)3/2
F
−1/2
n dx

}
|ρ| ≤ 1

ρ+ 1
2
∂
∂ρ

{∫∞
1 x(n−5)/2

(
ρ2x2 − 1

)3/2
G
−1/2
n dx

}
|ρ| > 1

(18)

where

Fn = Fn (x; ρ) = 1− ρ2x+ (1− x)x2n−1ρ2n,

Gn = Gn (x; ρ) = ρ2x− 1 + (x− 1)x2n−1ρ2n.

Remarks

1. The proof of theorem 7 follows SJ (1965) and SV (1996) in using results for ratios
of quadratic forms in normal variates. SV develop the integral representation (18)
for the case |ρ| ≤ 1. The present result extends that work to the explosive case and
provides explicit representations of the bias for |ρ| ≤ 1 and |ρ| > 1. These repre-
sentations are then used to develop a complete set of asymptotic expansions which
facilitate the development of the limit theory for the indirect inference estimator.

2. Explicit formulae for (18) are derived in the proof of theorem 7. For |ρ| ≤ 1 (see
(52))

bn(ρ) = ρ− 3ρ

2

∫ 1

0
x(n−1)/2

(
1− ρ2x2

)1/2
F−1/2
n dx+

ρ

2

∫ 1

0
x(n−3)/2

(
1− ρ2x2

)3/2
F−3/2
n dx

− nρ2n−1

2

∫ 1

0
x(5n−7)/2

(
1− ρ2x2

)3/2
F−3/2
n (1− x) dx, (19)

and for |ρ| > 1 (see (54))

bn(ρ) = ρ+
3ρ

2

∫ ∞
1

x(n−1)/2
(
ρ2x2 − 1

)1/2
G−1/2
n dx− ρ

2

∫ ∞
1

x(n−3)/2
(
ρ2x2 − 1

)3/2
G−3/2
n dx

− nρ2n−1

2

∫ ∞
1

x(5n−7)/2
(
ρ2x2 − 1

)3/2
G−3/2
n (x− 1) dx. (20)

These expressions are continuous through ρ = 1, as shown in Figs. 3a and 3b. An
alternate form of (20) that is convenient for computation is (see (55))

bn(ρ) = ρ+
3ρ

2

∫ 1

0
y(n−5)/2

(
ρ2 − y2

)1/2
H−1/2
n (y; ρ) dy

− ρ

2

∫ 1

0
y(5n−7)/2

(
ρ2 − y2

)3/2
H−3/2
n (y; ρ) dy

− nρ2n−1

2

∫ 1

0
y(n−5)/2

(
ρ2 − y2

)3/2
H−3/2
n (y; ρ) (1− y) dx,

where Hn (y; ρ) =
(
ρ2 − y

)
y2n−1 + (1− y) ρ2n.
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4.3 Asymptotic bias expansions

As discussed earlier, taking asymptotic expansions of the bias function leads to disconti-
nuities that reflect fundamental differences in the limit theory as n → ∞. The technical
reason for these discontinuities stems from the presence of terms such as ρ2n in the bind-
ing function bn (ρ) , which behave differently depending on whether |ρ| < 1, |ρ| > 1, or
ρ = 1 + c/n. To provide a comprehensive analysis, we consider each of these domains
separately. The following result summarizes the main cases of interest.

Theorem 8 For fixed ρ

bn (ρ) =


ρ− 2ρ

n +O
(
n−2

)
|ρ| < 1

±1∓ 1.7814
n +O

(
n−2

)
ρ = ±1

ρ+O
(
|ρ|−n

)
|ρ| > 1

. (21)

For ρ = 1 + c/n with c < 0

bn(1 +
c

n
) = 1 +

c

n
− 3

4n

∫ 1

0
y−

3
4 ` (y, c)−1/2 dy +

1

4n

∫ 1

0
y−

3
4 ` (y, c)−3/2 dy

+
e2c

8n

∫ 1

0
y

1
4 ` (y, c)−3/2 log ydy +O

(
n−2

)
. (22)

For ρ = 1 + c/n with c > 0

bn(1 +
c

n
) = 1 +

c

n
+

3

4n

∫ ∞
0

e
1
4
wk+ (w; c)1/2 dw − 1

4n

∫ ∞
0

e
1
4
wk+ (w; c)3/2 dw

− e2c

8n

∫ ∞
0

e
5
4
wk+ (w; c)3/2wdw +O

(
n−2

)
. (23)

In the above formulae

` (y, c) :=
4c+ log y

4c+ 2 log y
+

log y

4c+ 2 log y
ye2c, and k+ (w; c) :=

4c+ 2w

4c+ w + e2cwew
. (24)

The error orders in (22) and (23) hold uniformly for c in compact sets of R.

Remarks

1. The results for |ρ| < 1 and ρ = ±1 are well known. The result for |ρ| > 1 appears
to be new, as are the results for the local to unity cases. The latter results are
particularly useful in deriving the limit distribution of the indirect inference estima-
tor, as we discuss later. The distinction between c < 0 and c > 0 arises because of
the formulation of the binding function bn (ρ) in these two cases and the manner in
which the asymptotic expansions are obtained. These issues are expanded on below.
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2. When c↗ 0 and c↘ 0, the bias function expansions (22) and (23) converge to the
same value. So this local formulation, just like the function bn, is continuous. In
particular, we have

lim
c↗0

bn(1 +
c

n
) = 1− 3

4n
21/2

∫ 1

0
y−

3
4 {1 + y}−1/2 dy +

23/2

4n

∫ 1

0
y−

3
4 {1 + y}−3/2 dy

+
21/2

4n

∫ 1

0
y

1
4 {1 + y}−3/2 log ydy +O

(
n−2

)
= 1 +

1

n

{
−3

4
20.5 (3. 7081) +

21.5

4
(3. 2683)− 21/2

4
(0.45077)

}
+O

(
n−2

)
= 1− 1.7814

n
+O

(
n−2

)
, (25)

and

lim
c↘0

bn(1 +
c

n
) = 1 +

3

4n

∫ ∞
0

e
1
4
w

{
2w

w + wew

}1/2

dw − 1

4n

∫ ∞
0

e
1
4
w

{
2w

w + wew

}3/2

dw

− 1

8n

∫ ∞
0

e
5
4
w

{
2w

w + wew

}3/2

wdw +O
(
n−2

)
= 1 +

1

n

{
3

4
5.2441− 1

4
1. 2441− 43.2278

8

}
+O

(
n−2

)
= 1− 1.7814

n
+O

(
n−2

)
. (26)

3. Further, when ρ = 1 + c/n with c < 0 and c↘ −∞, we have

bn(ρ) = ρ− 3ρ

4n

∫ 1

0
y−

3
4dy +

ρ

4n

∫ 1

0
y−

3
4 +O

(
n−2 +

1

|c|

)
= ρ− 2ρ

n
+O

(
n−2 +

1

|c|

)
,

corresponding to the case of fixed |ρ| < 1; and when ρ = 1 + c/n with c > 0 and
c↗∞, we have

bn(ρ) = ρ+O
(
e−c
)
,

corresponding to the fixed ρ > 1 case.

4. An alternative form of the binding function when ρ = 1 + c/n and c < 0 is useful
and is given in the following result.

Corollary 9 For ρ = 1 + c/n with c < 0, (22) also has the form

bn(1 +
c

n
) = 1 +

c

n
− 3

4

∫ ∞
0

e−
1
4
vk− (v; c)1/2 dv +

1

4

∫ ∞
0

e−
1
4
vk− (v; c)3/2 dv

− e2c

8

∫ ∞
0

e−
5
4
vk− (v; c)3/2 vdv +O

(
n−2

)
, (27)

where
k− (v; c) :=

4c− 2v

4c− v − e2cve−v
. (28)
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5 Indirect inference limit theory

The indirect inference estimator of ρ is defined implicitly in terms of the binding function
of the ML estimator ρ̂n, so that ρ̂n = bn (ρ̆) , where bn is given by (19) and (20). We write
this implicit relationship for ρ̆ as

ρ̂n = bn (ρ̆)

= bn (ρ̆; |ρ̆| ≤ 1) + bn (ρ̆; |ρ̆| > 1) ,

where

bn(ρ; |ρ| ≤ 1) = ρ− 3ρ

2

∫ 1

0
x(n−1)/2

(
1− ρ2x2

)1/2
F−1/2
n dx

+
ρ

2

∫ 1

0
x(n−3)/2

(
1− ρ2x2

)3/2
F−3/2
n dx− nρ2n−1

2

∫ 1

0
x(5n−7)/2

(
1− ρ2x2

)3/2
F−3/2
n (1− x) dx,

(29)

and

bn(ρ; |ρ| > 1) = ρ+
3ρ

2

∫ ∞
1

x(n−1)/2
(
ρ2x2 − 1

)1/2
G−1/2
n dx

− ρ

2

∫ ∞
1

x(n−3)/2
(
ρ2x2 − 1

)3/2
G−3/2
n dx− nρ2n−1

2

∫ ∞
1

x(5n−7)/2
(
ρ2x2 − 1

)3/2
G−3/2
n (x− 1) dx.

(30)

To find the limit distribution of ρ̆ we use asymptotic formulae for the binding function
bn (ρ) and its derivatives. We consider the stationary and near unit root cases separately.

5.1 Stationary case

When |ρ| < 1, the extended delta method of theorem 1 is applicable. To show this,
consider the first derivative of the binding function. As is clear from (29), when |ρ| < 1
the final term in the binding function expression is O (ρn) . The first derivative of this
function is of the same order and since it is dominated by the other terms it is neglected
in the calculations below. For |ρ| < 1 we therefore have
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b′n(ρ) = 1− ∂

∂ρ

{
3ρ

2

∫ 1

0
x(n−1)/2

(
1− ρ2x2

)1/2
F−1/2
n dx

}
+

∂

∂ρ

{
ρ

2

∫ 1

0
x(n−3)/2

(
1− ρ2x2

)3/2
F−3/2
n dx

}
+O (ρn)

= 1− 3

2

∫ 1

0
x(n−1)/2

(
1− ρ2x2

)1/2
F−1/2
n dx+

3ρ2

2

∫ 1

0
x(n−5)/2

(
1− ρ2x2

)−1/2
F−1/2
n dx

+
3ρ

4

∫ 1

0
x(n−1)/2

(
1− ρ2x2

)1/2
F−3/2
n

∂

∂ρ
Fndx

+
1

2

∫ 1

0
x(n−3)/2

(
1− ρ2x2

)3/2
F−3/2
n dx− 3ρ2

2

∫ 1

0
x(n−7)/2

(
1− ρ2x2

)1/2
F−3/2
n dx

− 3ρ

4

∫ 1

0
x(n−3)/2

(
1− ρ2x2

)3/2
F−5/2
n

∂

∂ρ
Fndx+O (ρn) . (31)

Now Fn = 1− ρ2x+ (1− x)x2n−1ρ2n and

∂

∂ρ
Fn = −2ρx+ 2n (1− x)x2n−1ρ2n−1 = −2ρx+O

(
nρ2n−1

)
, (32)

so that substituting (32) into (31) and using (40) of lemma 10, we deduce that for |ρ| < 1

b′n(ρ) = 1 +O
(
n−1

)
.

It follows that, given |ρ| < 1, for all δ > 0 and any sequence sn →∞ for which sn/n1/2 →
0, we have

sup
sn|r−ρ|<δ

∣∣∣∣b′n (ρ)− b′n (r)

b′n (r)

∣∣∣∣→ 0.

Writing ρ̆ = b−1
n (ρ̂n) = fn (ρ̂n) and using the fact that f ′n (r) = 1/b′n (r) and

f ′n (r)− f ′n (ρ)

f ′n (ρ)
=
b′n (ρ)− b′n (r)

b′n (r)
,

it follows that

sup
sn|r−ρ|<δ

∣∣∣∣f ′n (r)− f ′n (ρ)

f ′n (ρ)

∣∣∣∣→ 0.

Hence, by theorem 1,

√
n (ρ̆− ρ) ∼ 1

b′n(ρ)

√
n (ρ̂n − ρ) ∼

√
n (ρ̂n − ρ)⇒ N

(
0, 1− ρ2

)
.

5.2 Unit root case

The unit root case is considerably more complex because of the implicit determination
of ρ̆ via the mapping ρ̂n = bn (ρ̆) . No explicit functional form for the inverse mapping
ρ̆ = b−1

n (ρ̂n) is available, although series expressions may be obtained using Lagrange
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inversion. Instead of an explicit inverse map, it turns out that we can directly manipulate
the expression to accommodate standardized and centred versions of the ML estimator
ξmln = n (ρ̂n − ρ) and the II estimator ξiin = n (ρ̆− ρ) . The transformed mapping may be
used to deduce the limit theory for ξiin using an implicit function version of the continuous
mapping theorem. This approach is applicable when ρ = 1 and when ρ = 1 + c/n.

We start with the bias expressions for ρ̂n in the near integrated case ρ = 1 + c/n. We
need to allow for both c ≤ 0 and c > 0. So we combine (22), or its alternative form (27),
with (23). Then, in general for ρ = 1 + c/n, we have

bn(ρ) = ρ+
1

n
g (c) +O

(
n−2

)
, (33)

where
g (c) = g− (c) 1{c≤0} + g+ (c) 1{c>0} (34)

with

g−(c) = −3

4

∫ ∞
0

e−
1
4
vk− (v; c)1/2 dv+

1

4

∫ ∞
0

e−
1
4
vk− (v; c)3/2 dv−e

2c

8

∫ ∞
0

e−
5
4
vk− (v; c)3/2 vdv,

(35)
for c ≤ 0 and

g+(c) =
3

4

∫ ∞
0

e
1
4
wk+ (w; c)1/2 dw−1

4

∫ ∞
0

e
1
4
wk+ (w; c)3/2 dw−e

2c

8

∫ ∞
0

e
5
4
wk+ (w; c)3/2wdw,

(36)
for c > 0 where k− (v; c) and k+ (w; c) are defined in (24) and (28).

In view of earlier results, the equation error in (33) holds uniformly for c in compact
sets of R. Observe that k− (v; c) > 0 for all c ≤ 0 over v ∈ (0,∞) , and k+ (w; c) > 0 for all
c > 0 over w ∈ (0,∞) . Hence, the integrands in (35) and (36) are real and well defined.
Moreover, as shown in (25) and (26), when c→ ±0, we get g−(0) = g+(0) = −1.7814 and
the function g (c) is continuous through c = 0.

The derivatives of the binding function bn (ρ) in the vicinity of unity have a different
form from when |ρ| < 1. In particular, terms involving ρ2n in (29) and (32) are no longer
exponentially small. Calculations reveal that for ρ = 1 + c/n, the derivatives take the
following form

b(j)n (ρ) =


1− 1

21/2

∫ 1
0 y

1/4
(
1 + e2cy

)−3/2
log ydy +O

(
n−1

)
j = 1

(2n)j−1

21/2

∫ 1
0 y

1/4
(
1 + e2cy

)−3/2
log ydy {1 + o (1)} j > 1

and therefore satisfy b(j)n (1) = O
(
nj−1

)
, so that second and higher derivatives are un-

bounded at ρ = 1 as n → ∞. This corresponds to the rapidly changing form of the bias
function bn (ρ) − ρ in the vicinity of unity that is evident in Fig. 2. As a result, the ex-
tended delta method fails for ρ in the immediate vicinity of unity. Note, in particular,
that for some intermediate value r̃ between r and ρ we have

sup
sn|r−ρ|<δ

∣∣∣∣b′n (ρ)− b′n (r)

b′n (r)

∣∣∣∣ = sup
sn|r−ρ|<δ

∣∣∣∣∣b(2)
n (r̃) (ρ− r)

b′n (r)

∣∣∣∣∣ = Op

(
n× δ

sn

)
,
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which is divergent for all sequences sn → ∞ for which sn/n → 0. Hence the sequence
bn (and by implication b−1

n ) is not asymptotically locally relatively equicontinuous and
theorem 1 does not apply. One way of addressing this failure in the delta method is to
attempt a full Taylor representation of bn (ρ) and Lagrange inversion, as in the examples
discussed in Section 2. However, a more direct approach turns out to be possible using
the relation (33).

Since ρ̂n = bn (ρ̆) , we have by direct substitution of the centred and scaled estimates
ξmln = n (ρ̂n − ρ) and ξiin = n (ρ̆− ρ) into (33)

ξmln = ξiin + g
(
ξiin
)

+O
(
n−1

)
=: h

(
ξiin
)

+O
(
n−1

)
, (37)

where h (c) = c+ g (c) and g (c) is given by (34). Equation (37) defines a sequence of im-
plicit mappings that determine ξiin in terms of ξ

ml
n . The functions g and h are independent

of n. In the limit as n → ∞, we have ξmln ∼ h
(
ξiin
)
. So, the limit function h implicitly

determines the limit distribution of ξiin .
The limit function h is graphed in Fig. 4. This function is monotonic and continuous

(including the point c = 0 - see the argument below) and a continuous inverse function
h−1 exists by virtue of lemma 5. The shape of the limit function h is remarkably similar
to that of the binding function bn shown in Fig. 3.

Fig. 4 The limit function h (solid line) in the implicit map ξml = h
(
ξii
)
relating the

indirect inference limiting variate ξii to the limiting ML variate ξml =
∫
WdW/

∫
W 2,

shown against the 45o line (broken line).

The remaining argument is straightforward. According to standard theory (Phillips,
1987), ξmln ⇒ ξml =

∫ 1
0 WdW/

∫ 1
0 W

2, where W is a standard Brownian motion. By
the Skorohod representation theorem, we may enlarge the probability space with distri-
butionally equivalent random sequences for which ξmln →a.s. ξ

ml. On this space by the
continuity of the inverse map h−1 we deduce that ξiin →a.s ξ

ii, where ξii is the solution of
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ξml = h
(
ξii
)
. Hence, in the original space we have ξiin ⇒ ξii, as n → ∞ by the implicit

continuous mapping theorem. Thus, the limit distribution of ξii in the unit root case is
given by

n (ρ̆− 1)⇒ h−1

(∫ 1

0
WdW/

∫ 1

0
W 2

)
, (38)

where h−1 is the inverse function of h (c) = c+ g (c) and g (c) is given in (34).
The distribution of the centred and scaled indirect inference estimator ξiin is shown in

Fig. 5 against that of the maximum likelihood estimator ξmln . The differences are imme-
diately evident from the figure. The distribution of ξiin is much less biased than ξ

ml
n , as

we would expect from the criterion function, but it is also much more concentrated that
that of the ξmln estimator. Whereas the bulk of the distribution of ξmln is to the left of the
origin, the distribution of ξiin leans to the explosive side of the origin while still retaining
a long left hand tail. Thus, the functional transformation h−1 changes the shape as well
as the location of the limit distribution of the ML estimator.

Since the binding function bn and limit function h are monotonic, tests and confidence
intervals based on the IIE ρ̆ and the MLE ρ̂ are asymptotically equivalent. But, in
finite samples there are differences. For example, when |ρ| < 1, ρ̂ and ρ̆ have the same

N
(
ρ, 1−ρ2

n

)
asymptotic distribution but tests of ρ = ρ0 and confidence intervals for ρ

based on the nominal asymptotics differ. A similar point applies in the case of mildly
explosive asymptotics (Phillips and Magdalinos, 2007). Unit root tests based on the
test statistics Zρ̆ = n (ρ̆− 1) and Zρ̂ = n (ρ̂− 1) are also asymptotically equivalent, as
are confidence intervals constructed by inverting these tests using the local to unit limit
theory, as in Stock (1991). But finite sample tests and confidence intervals based on the
nominal asymptotics differ2.

5.3 Local to unity case

In this case, the true value is ρ = 1 + c/n and ξmln = n (ρ̂n − ρ)⇒ ξml :=
∫ 1

0 JcdW/
∫ 1

0 J
2
c ,

where W is a standard Brownian motion and Jc (·) =
∫ ·

0 e
c(·−s)dW (s) is a linear diffusion

(Phillips, 1987: Chan and Wei, 1987). Since (33) continues to hold for all c we have
ρ̂n = bn (ρ̆) with bn(ρ) = ρ + 1

ng (c) + O
(
n−2

)
. Then, setting c̆ = n (ρ̆− 1) we have

ρ̂n = bn (ρ̆) = ρ̆+ 1
ng (c̆) +O

(
n−2

)
and

n (ρ̂n − ρ) = n (ρ̆− ρ) + g (n (ρ̆− ρ) + n (ρ− 1)) +O
(
n−1

)
= n (ρ̆− ρ) + g (n (ρ̆− ρ) + c) +O

(
n−1

)
. (39)

Substituting ξmln = n (ρ̂n − ρ) and ξiin = n (ρ̆− ρ) into (39), we find that

ξmln = ξiin + g
(
ξiin + c

)
+O

(
n−1

)
,

2For example, if f iiL,α is the lower α percentile of the limit variate ξii = h−1
(∫ 1

0
WdW/

∫ 1

0
W 2
)
,

then a one sided nominal 100α% test will reject if Zρ̆ < f iiL,α, that is if ρ̂ < bn
(
1 + f iiL,α/n

)
or Zρ̂ <

n
{
bn
(
1 + f iiL,α/n

)
− 1
}
= f iiL,α + g

(
f iiL,α

)
+O

(
n−1

)
= h

(
f iiL,α

)
+O

(
n−1

)
= fmlL,α +O

(
n−1

)
, where fmlL,α

is the lower α percentile of the distribution of the limit variate ξml.
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and hence

ξmln + c =
(
ξiin + c

)
+ g

(
ξiin + c

)
+O

(
n−1

)
= h

(
ξiin + c

)
+O

(
n−1

)
.

Proceeding as in the unit root case, we deduce that

n (ρ̆− ρ)⇒ h−1

(∫ 1

0
JcdW/

∫ 1

0
J2
c + c

)
− c,

so the limit distribution of the indirect inference estimator is given by the inverse of the
same implicit mapping h as in the unit root case. Only the intercept (−c) and argument
functional

∫ 1
0 JcdW/

∫ 1
0 J

2
c + c of h−1 change according to the value of the localizing

coeffi cient c.

Fig. 5 Densities of n
(
ξmln − 1

)
(solid line) and n

(
ξiin − 1

)
(broken line) for n = 500.

6 Conclusions and Extensions

The present work shows how simulation based estimation procedures like indirect inference
can complicate limit theory by virtue of the introduction of sample sized dependent func-
tionals into the estimators. These functionals usually serve an important function because
of the manner in which they intentionally capture and correct for (possibly undesirable)
finite sample features of more basic estimation procedures like maximum likelihood or
quasi maximum likelihood. One of the resulting complications is that conventional delta
method arguments may fail because of the presence of a sequence of functions rather than
some fixed function in the definition of the estimator. Stronger conditions on the sequence
of functions are required to validate the standard approach. Another complication is that
the estimating function equations may only determine the estimator implicitly, so that it
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is necessary to work with implicit mappings and global inversion to define the estimator
sequence. A final complication and one that is potentially the most significant is that the
sequence of functions may influence the limit distribution theory in a material way, affect-
ing the shape characteristics of the distribution as well as simple matters such as location
and scale. The indirect inference estimator of the autoregressive coeffi cient is shown to
be affected in this way for values of the coeffi cient in the usual O

(
n−1

)
vicinity of unity.

The resulting limit theory provides both a bias correction and a variance reduction to
the maximum likelihood estimator in this vicinity, opening the way to other procedures
which have similar properties without compromising the limit theory for the stationary
case, such as the fully aggregated estimator of Han, Phillips and Sul (2009).

Given the prolific nature of simulation-based techniques in econometrics, it seems
evident that in many cases econometric estimators and inferential procedures will rely on
sample-sized based functionals. In such cases, it will generally be necessary to use some
version of the extended delta method in asymptotic derivations. These methods are likely
to become more numerous in future econometric work as cases of greater complexity are
studied using simulation-based methods. Of course, most of these applications will not
involve the type of additional diffi culties that arise in the limit binding function of the unit
root case where nonlinearities in the function persist in the limit and implicit maps are
involved. Nonetheless, these additional complexities may arise in some cases of practical
importance where simulation-based methods are used in vector time series systems with
some unit roots.

The AR(1) case considered here is the prototype for all models with an autoregressive
unit root. Practical cases typically involve more variables and parameters. In such cases,
it becomes necessary to deal with multivariate asymptotics, possible degeneracies in the
limit theory, and the development of binding function algebra for vector autoregressive
systems with possible unit roots. Generalization of the extended delta method to multi-
variate functions and functionals that allow for degeneracies therefore seems worthwhile
to accommodate these applications. Similarly, the implicit mapping theorem may be
usefully extended to multivariate and functional inverse and implicit function theorems.
These may be necessary in dealing with nonstationary time series systems where indirect
inference methods are used. More immediate applications of the results here are to dy-
namic panel data models and continuous time systems where indirect inference methods
have been employed to correct bias and to price derivative securities. These extensions
and applications seem worthy of consideration in future research.
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7 Appendix:

7.1 Some useful integral asymptotic expansions

The following lemmas provide some results on asymptotic expansions of integrals that are
useful in the main arguments of the paper. In particular, these results are used to develop
bias expansions for bn (ρ) for three separate fixed ρ cases (|ρ| < 1, ρ = ±1, and |ρ| > 1)
and to show asymptotic behavior in the local to unity case where ρ = 1+ c

n for some fixed
c. These integral asymptotic expansion formulae are likely to have applications in other
contexts.

Lemma 10 Let Fn = Fn (x; ρ) = 1 − ρ2x + (1− x)x2n−1ρ2n and suppose a1, a2, γ > 0.
Then as n→∞∫ 1

0
xa1n+a4

(
1− ρ2x2

)α
F−βn dx =

(
1− ρ2

)α−β
a1n

+O
(
n−2

)
, |ρ| < 1, (40)∫ 1

0
xa1n+a4 (1 + x)α

(
1 + γxa2n+a3

)β
dx =

2α

a2n

∫ 1

0
y

(a1−a2)
a2 (1 + γy)β dy +O

(
n−2

)
, (41)

n

∫ 1

0
xa1n+a4 (1 + x)α

(
1 + γxa2n+a3

)β
(1− x) dx

= − 2α

a2
2n

∫ 1

0
y

(a1−a2)
a2 (1 + γy)β log ydy +O

(
n−2

)
. (42)

Proof of Lemma 10. To prove (40), note first that ρ2n is exponentially small for |ρ| < 1.
Then, Fn = 1−ρ2x+O

(
ρ2n
)
. Setting y = xa1n+a4 , we have dy = (a1n+ a4)xa1n+a4−1dx =

(a1n+ a4) y
a1n+a4−1
a1n+a4 dx and upon transformation∫ 1

0
xa1n+a4

(
1− ρ2x2

)α
F−βn dx

=
1

a1n+ a4

∫ 1

0
y

1−a1n+a4−1
a1n+a4

(
1− ρ2y

2
a1n+a4

)α (
1− ρ2y

1
a1n+a4

)−β
dy

=

(
1− ρ2

)α−β
a1n+ a4

∫ 1

0
y

1
a1n+a4 dy

{
1 +O

(
n−1

)}
=

(
1− ρ2

)α−β
a1n

+O
(
n−2

)
,

since y
b

a1n+a4 = 1 + b
a1n+a4

log y + O
(
n−2

)
for all b 6= 0 and

∣∣∣∫ 1
0 y

a log ydy
∣∣∣ < ∞ for all

a ≥ −1.

To prove (41), set y = xa2n+a3 , so that dy = (a2n+ a3)xa2n+a3−1dx = a2ny
a2n+a3−1
a2n+a3 dx

and upon transformation∫ 1

0
xa1n+a4 (1 + x)α

(
1 + γxa2n+a3

)β
dx =

1

a2n+ a3

∫ 1

0
y

(a1−a2)n+a4−a3+1
a2n+a3

(
1 + y

1
a2n+a3

)α
(1 + γy)β dy

=
2α

a2n

∫ 1

0
y

(a1−a2)
a2 (1 + γy)β dy +O

(
n−2

)
,
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since y
b

a2n+a3 = 1 + b
a2n+a3

log y + O
(
n−2

)
for all b 6= 0 and

∫ 1
0 y

a (1 + y)β |log y| dy < ∞
for all a > 0.

To prove (42), the same approach leads to

n

∫ 1

0
xa1n+a4 (1 + x)α

(
1 + γxa2n+a3

)β
(1− x) dx

=
n

a2n+ a3

∫ 1

0
y

(a1−a2)n+a4−a3+1
a2n+a3

(
1 + y

1
a2n+a3

)α
(1 + γy)β

(
1− y

1
a2n+a3

)
dy

= − 2α

a2
2n

∫ 1

0
y

(a1−a2)
a2 (1 + γy)β log ydy +O

(
n−2

)
. (43)

Observe that, using the transformation w = − log y, we have∫ 1

0
ya−1 |log y|b dy =

∫ ∞
0

e−awwbdw <∞ (44)

for all a > 0 and b > −1, which ensures that (43) is finite.

Lemma 11 For ρ = 1 + c
n , with c fixed, Fn = 1 − ρ2x + (1− x)x2n−1ρ2n, a1 > 0, and

α− β > −1, we have∫ 1

0
xa1n+a4

(
1− ρ2x2

)α
F−βn dx

=

{
2α

2n

∫ 1
0 y

(a1−2)
2

(
1 + e2cy

)−β
dy +O

(
n−2

)
α = β

2α

4n

∫ 1
0 y

(a1−2)
2

(
1 + e2cy

)−β
(− log y)α−β dy +O

(
n−2

)
α 6= β

.

Proof of Lemma 11. Since ρ2n =
(
1 + c

n

)2n
= e2c

{
1 +O

(
n−1

)}
we have

Fn (x, ρ) = 1− x+ (1− x)x2n−1e2c +O
(
n−1

)
= (1− x)

(
1 + e2cx2n−1

)
+O

(
n−1

)
. (45)

Using Lemma 10 we obtain∫ 1

0
xa1n+a4

(
1− ρ2x2

)α
F−βn dx

=

∫ 1

0
xa1n+a4

(
1− x2

)α
(1− x)−β

(
1 + e2cx2n−1

)−β
dx
{

1 +O
(
n−1

)}
=

∫ 1

0
xa1n+a4 (1 + x)α (1− x)α−β

(
1 + e2cx2n−1

)−β
dx
{

1 +O
(
n−1

)}
=

{ ∫ 1
0 x

a1n+a4 (1 + x)α
(
1 + e2cx2n−1

)−β
dx
{

1 +O
(
n−1

)}
α = β∫ 1

0 x
a1n+a4 (1 + x)α (1− x)α−β

(
1 + e2cx2n−1

)−β
dx
{

1 +O
(
n−1

)}
α 6= β

=

{
2α

2n

∫ 1
0 y

(a1−2)
2

(
1 + e2cy

)−β
dy +O

(
n−2

)
α = β

2α

4n

∫ 1
0 y

(a1−2)
2

(
1 + e2cy

)−β
(− log y)α−β dy +O

(
n−2

)
α 6= β

,

the final integral being finite in view of (44) when α− β > −1.
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Lemma 12 If a1 > 0, then as n→∞∫ 1

0
xa1n+a2

(
1− ρ2x2

)α (
1− ρ2x

)−β
dx =

(
1− ρ2

)α−β
a1n

+O
(
n−2

)
.

Proof of Lemma 12. Integrating by parts we have∫ 1

0
xa1n+a2

(
1− ρ2x2

)α (
1− ρ2x

)−β
dx

=

[
xa1n+a2+1

a1n+ a2 + 1

(
1− ρ2x2

)α (
1− ρ2x

)−β]1

0

+
2αρ2

a1n+ a2 + 1

∫ 1

0
xa1n+a2+2

(
1− ρ2x2

)α−1 (
1− ρ2x

)−β
dx

− βρ2

a1n+ a2 + 1

∫ 1

0
xa1n+a2+2

(
1− ρ2x2

)α−1 (
1− ρ2x

)−β−1
dx

=

(
1− ρ2

)α−β
a1n

+O
(
n−2

)
.

7.2 Proofs of the main results

Proof of Theorem 1. By the mean value theorem

ϕn (Tn)− ϕn (θ) = ϕ′n (T ∗n) (Tn − θ) ,

for some T ∗n on the line segment connecting Tn and θ. Hence

dn
ϕ′n (θ)

(ϕn (Tn)− ϕn (θ)) =

{
1 +

ϕ′n (T ∗n)− ϕ′n (θ)

ϕ′n (θ)

}
dn (Tn − θ) .

Since |T ∗n − θ| ≤ |Tn − θ| = Op
(
d−1
n

)
and sn

dn
→ 0, it follows that sn |T ∗n − θ| = op (1) .

Then
ϕ′n (T ∗n)− ϕ′n (θ)

ϕ′n (θ)
→p 0

by local relative equicontinuity (2) in a shrinking neighborhood of radius O
(
s−1
n

)
, giving

the required result.
Proof of Lemma5. See Ge and Wang (2002, Lemma 1).
Proof of Theorem 7. As indicated, the structure of the proof follows SJ (1965) and SV
(1996) by considering ratios of quadratic forms in normal variates. The starting point is
to write the density and moments of ρ̂n =

∑n
t=1 ytyt−1/

∑n
t=1 y

2
t−1 = U/V in terms of the

joint moment generating function m (u, q) of the quadratic forms (U, V ). White (1958)
showed that m (u, q) = D

−1/2
n where Dn = Dn (u, q) is a determinant that satisfies the

second order difference equation

Dn =
(
1 + ρ2 + 2q

)
Dn−1 − (ρ+ u)2Dn−2, D0 = D1 = 1.
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Then by direct calculation (see SJ p.3) we have the following expression for the bias
function

E(ρ̂n − ρ) =

∫ ∞
0

∂

∂ρ
Dn (q)−1/2 dq, (46)

where the determinant Dn (q) = Dn (0, q) is evaluated explicitly as

Dn (q) = Aθn + (1−A) ρ2nθ−n, A =
θ − ρ2

θ2 − ρ2
, (47)

θ = θ (q) =
(

1 + ρ2 + 2q +
√

∆
)
/2,

∆ =
(
1 + ρ2 + 2q

)2 − 4ρ2. (48)

Observe that the following inequalities hold

θ = θ (q) =
(

1 + ρ2 + 2q +
√

∆
)
/2 ≥ 0,

∆ =
(
1− ρ2

)2
+ 4q2 + 4q

(
1 + ρ2

)
≥
(
1− ρ2

)2 ≥ 0,

θ − ρ2 =
(

1− ρ2 + 2q +
√

∆
)
/2 ≥ q ≥ 0,

θ − ρ = (1− ρ)2 + 2q +
√

∆ ≥ 0,

θ + ρ = (1 + ρ)2 + 2q +
√

∆ ≥ 0,

θ2 − ρ2 = (θ − ρ) (θ + ρ) ≥ 0

for all q ≥ 0. It follows that the determinant (47) is positive for all q > 0 and the integral
(46) is defined for all ρ.

Write the binding function as

bn(ρ) = E(ρ̂n) = ρ+

∫ ∞
0

∂

∂ρ
Dn (q)−1/2 dq = ρ− 1

2

∫ ∞
0

Dn (q)−3/2 ∂Dn (q)

∂ρ
dq.

Define x = 1/θ and C = 1 + ρ2 + 2q, so that

x =
2

1 + ρ2 + 2q +
√

∆
=

2

C +
√

∆
= 2

C −
√

∆

C2 −∆
=
C −

√
∆

2ρ2
, (49)

since ∆ =
(
1 + ρ2 + 2q

)2 − 4ρ2 = C2 − 4ρ2. It follows from (49) that

C + ∆1/2 =
2

x
and C −∆1/2 = 2ρ2x,

so that C = 1/x+ ρ2x, leading to

q =
1

2

(
C − 1− ρ2

)
=

1

2

(
1/x+ ρ2x− 1− ρ2

)
=

(1− x)
(
1− ρ2x

)
2x

.

We write

q =
(1− x)

(
1− ρ2x

)
2x

=


(1−x)(1−ρ2x)

2x x ∈ (0, 1], |ρ| ≤ 1
(x−1)(xρ2−1)

2x x ∈ [1,∞), |ρ| > 1
,
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with derivative

dq

dx
= −

(
1− ρ2x2

)
2x2

{
< 0 x ∈ (0, 1], for |ρ| ≤ 1
> 0 x ∈ [1,∞), for |ρ| > 1

, (50)

so q = q (x) is monotonic over the two domains of x in each case with q ∈ [0,∞). We
may therefore change the variable of integration in (46) from q to x with corresponding
changes in the domain of integration depending on the value of ρ as specified in (50). For
ρ = 1, either domain may be used.

Using this change of variable, we have

A =
θ − ρ2

θ2 − ρ2
=

1
x − ρ

2

1
x2 − ρ2

=
x− ρ2x2

1− ρ2x2
=
x
(
1− ρ2x

)
1− ρ2x2

,

1−A = 1− x− ρ2x2

1− ρ2x2
=

1− x
1− ρ2x2

,

and then

Dn (q) =

(
1− ρ2x

)
1− ρ2x2

1

xn−1
+

1− x
1− ρ2x2

ρ2nxn

=

{
1−ρ2x+(1−x)x2n−1ρ2n

(1−ρ2x2)xn−1 = Fn(x:ρ)
(1−ρ2x2)xn−1 , |ρ| ≤ 1

ρ2x−1+(x−1)x2n−1ρ2n

(ρ2x2−1)xn−1 = Gn(x:ρ)
(ρ2x2−1)xn−1 , |ρ| > 1

,

where

Fn (x; ρ) := 1− ρ2x+ (1− x)x2n−1ρ2n,

Gn (x; ρ) := ρ2x− 1 + (x− 1)x2n−1ρ2n.

For |ρ| ≤ 1, we have

E(ρ̂n − ρ) =
∂

∂ρ

∫ ∞
0

Dn (q)−1/2 dq,

=
∂

∂ρ

∫ 1

0

(
Fn (x; ρ)

(1− ρ2x2)xn−1

)−1/2
(
1− ρ2x2

)
2x2

dx

=
1

2

∂

∂ρ

{∫ 1

0
x(n−5)/2

(
1− ρ2x2

)3/2
Fn (x; ρ)−1/2 dx

}
. (51)

To evaluate (51), note that

∂

∂ρ

{∫ 1

0
x(n−5)/2

(
1− ρ2x2

)3/2
F−1/2
n dx

}
=

3

2

∫ 1

0
x(n−5)/2

(
−2ρx2

) (
1− ρ2x2

)1/2
F−1/2
n dx

− 1

2

∫ 1

0
x(n−5)/2

(
1− ρ2x2

)3/2
F−3/2
n

{
−2ρx+ 2n (1− x)x2n−1ρ2n−1

}
dx,
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so that for |ρ| ≤ 1 we have

bn(ρ) = ρ+
1

2

∂

∂ρ

{∫ 1

0
x(n−5)/2

(
1− ρ2x2

)3/2
F−1/2
n (x; ρ) dx

}
= ρ+

3

4

∫ 1

0
x(n−5)/2

(
−2ρx2

) (
1− ρ2x2

)1/2
F−1/2
n dx

− 1

4

∫ 1

0
x(n−5)/2

(
1− ρ2x2

)3/2
F−3/2
n

{
−2ρx+ 2n (1− x)x2n−1ρ2n−1

}
dx

= ρ− 3ρ

2

∫ 1

0
x(n−1)/2

(
1− ρ2x2

)1/2
F−1/2
n dx

+
ρ

2

∫ 1

0
x(n−3)/2

(
1− ρ2x2

)3/2
F−3/2
n dx− nρ2n−1

2

∫ 1

0
x(5n−7)/2

(
1− ρ2x2

)3/2
F−3/2
n (1− x) dx.

(52)

For |ρ| > 1, we have

E(ρ̂n − ρ) =
∂

∂ρ

∫ ∞
0

Dn (q)−1/2 dq,

=
∂

∂ρ

∫ ∞
1

(
Gn (x; ρ)

(ρ2x2 − 1)xn−1

)−1/2
(
ρ2x2 − 1

)
2x2

dx

=
1

2

∂

∂ρ

∫ ∞
1

x(n−5)/2
(
ρ2x2 − 1

)3/2
Gn (x : ρ)−1/2 dx, (53)

and by direct evaluation

∂

∂ρ

{∫ ∞
1

x(n−5)/2
(
ρ2x2 − 1

)3/2
G−1/2
n dx

}
=

3

2

∫ ∞
1

x(n−5)/2
(
2ρx2

) (
ρ2x2 − 1

)1/2
G−1/2
n dx

− 1

2

∫ ∞
1

x(n−5)/2
(
ρ2x2 − 1

)3/2
G−3/2
n

{
2ρx+ 2n (x− 1)x2n−1ρ2n−1

}
dx

=
3

2

∫ ∞
1

x(n−5)/2
(
2ρx2

) (
ρ2x2 − 1

)1/2
G−1/2
n dx− ρ

∫ ∞
1

x(n−3)/2
(
ρ2x2 − 1

)3/2
G−3/2
n dx

− nρ2n−1

∫ ∞
1

x(n−5)/2
(
ρ2x2 − 1

)3/2
G−3/2
n (x− 1)x2n−1dx.

It follows that

bn(ρ) = ρ+
1

2

∂

∂ρ

{∫ ∞
1

x(n−5)/2
(
ρ2x2 − 1

)3/2
G−1/2
n dx

}
= ρ+

3

4

∫ ∞
1

x(n−5)/2
(
2ρx2

) (
ρ2x2 − 1

)1/2
G−1/2
n dx

− ρ

2

∫ ∞
1

x(n−3)/2
(
ρ2x2 − 1

)3/2
G−3/2
n dx

− nρ2n−1

2

∫ ∞
1

x(n−5)/2
(
ρ2x2 − 1

)3/2
G−3/2
n (x− 1)x2n−1dx.
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Hence, the binding formula for |ρ| > 1 is

bn(ρ) = ρ+
3ρ

2

∫ ∞
1

x(n−1)/2
(
ρ2x2 − 1

)1/2
G−1/2
n dx

− ρ

2

∫ ∞
1

x(n−3)/2
(
ρ2x2 − 1

)3/2
G−3/2
n dx

− nρ2n−1

2

∫ ∞
1

x(5n−7)/2
(
ρ2x2 − 1

)3/2
G−3/2
n (x− 1) dx (54)

Transforming using y = 1/x, and noting that

Gn

(
1

y
; ρ

)
= ρ2 1

y
− 1 +

(
1

y
− 1

)
y−2n+1ρ2n

=

(
ρ2 − y

)
y2n−1 + (1− y) ρ2n

y2n
=:

Hn (y; ρ)

y2n
,

we have the alternate form

bn(ρ) = ρ+
3ρ

2

∫ 1

0
y−(n−1)/2

(
ρ2 − y2

)1/2
y

H−1/2
n (y; ρ) yn−2dy

− ρ

2

∫ 1

0
y−(n−3)/2

(
ρ2 − y2

)3/2
y3

H−3/2
n (y; ρ) y3n−2dy

− nρ2n−1

2

∫ 1

0
y−(5n−7)/2

(
ρ2 − y2

)3/2
y3

H−3/2
n (y; ρ) y3n−3 (1− y) dy

= ρ+
3ρ

2

∫ 1

0
y(n−5)/2

(
ρ2 − y2

)1/2
H−1/2
n (y; ρ) dy

− ρ

2

∫ 1

0
y(5n−7)/2

(
ρ2 − y2

)3/2
H−3/2
n (y; ρ) dy

− nρ2n−1

2

∫ 1

0
y(n−5)/2

(
ρ2 − y2

)3/2
H−3/2
n (y; ρ) (1− y) dx (55)

Proof of Theorem 8. (i) Case |ρ| < 1
Using Fn = 1 − ρ2x + (1− x)x2n−1ρ2n = 1 − ρ2x + O

(
ρ2n
)
and nρn = o

(
n−2

)
we

have for |ρ| < 1 from (52) and Lemma 12

bn(ρ) = ρ− 3ρ

2

∫ 1

0
x(n−1)/2

(
1− ρ2x2

)1/2
F−1/2
n dx+

ρ

2

∫ 1

0
x(n−3)/2

(
1− ρ2x2

)3/2
F−3/2
n + o

(
n−1

)
= ρ− 3ρ

2

∫ 1

0
x(n−1)/2

(
1− ρ2x2

)1/2 (
1− ρ2x

)−1/2
dx

+
ρ

2

∫ 1

0
x(n−3)/2

(
1− ρ2x2

)3/2 (
1− ρ2x

)−3/2
dx+ o

(
n−2

)
= ρ− 2ρ

n
+O

(
n−2

)
,
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giving the well-known asymptotic bias formula for ρ̂n in the stationary case.
(ii) Case ρ = ±1
When ρ = 1, we have Fn (x; 1) = 1 − x + (1− x)x2n−1 = (1− x)

(
1 + x2n−1

)
and so

from (52)

bn(1) = 1− 3

2

∫ 1

0
x(n−1)/2 (1 + x)1/2

(1 + x2n−1)1/2
dx+

1

2

∫ 1

0
x(n−3)/2 (1 + x)3/2

(1 + x2n−1)3/2
dx

− n

2

∫ 1

0
x(5n−7)/2 (1 + x)3/2

(1 + x2n−1)3/2
(1− x) dx.

Using (41) and (42), we have∫ 1

0
x(n−1)/2 (1 + x)1/2

(1 + x2n−1)1/2
dx =

21/2

2n

∫ 1

0
y−

3
4 (1 + y)−1/2 dy +O

(
n−2

)
,∫ 1

0
x(n−3)/2 (1 + x)3/2

(1 + x2n−1)3/2
dx =

23/2

2n

∫ 1

0
y−

3
4 (1 + y)−3/2 dy +O

(
n−2

)
,

n

∫ 1

0
x(n−1)/2 (1 + x)3/2

(1 + x2n−1)3/2
(1− x)x2n−3dx = −23/2

4n

∫ 1

0
y

1
4 (1 + y)−3/2 log ydy +O

(
n−2

)
.

It follows that

bn(1) = 1− 3
21/2

4n

∫ 1

0
y−

3
4 (1 + y)−1/2 dy +

23/2

4n

∫ 1

0
y−

3
4 (1 + y)−3/2 dy

− 1

2

{
−23/2

4n

∫ 1

0
y

1
4 (1 + y)−3/2 log ydy

}
+O

(
n−2

)
(56)

and numerical evaluation of the integrals gives

bn(1) = 1− 3

4n
20.5 (3. 7081) +

21.5

4n
(3. 2683)− 21/2

4n
(0.45077) +O

(
n−2

)
= 1− 1.7814

n
+O

(
n−2

)
, (57)

corresponding to the result found by SJ (1965) for the unit root case using different
methods. The numerical value −1.7814 is the mean of the limit distribution of n (ρ̂n − 1)
when ρ = 1.

Similar calculations apply when ρ = −1, in which case we have

bn(−1) = −1 +
3

4n
20.5 (3. 7081)− 21.5

4n
(3. 2683) +

21/2

4n
(0.45077) +O

(
n−2

)
= −1 +

1.7814

n
+O

(
n−2

)
, (58)

giving the mirror image of (57).
(iii) Case ρ = 1 + c

n , c < 0
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Next consider the local to unity case with ρ = 1+ c
n and c < 0. The relevant expression

for the bias is

bn(ρ) = ρ− 3ρ

2

∫ 1

0
x(n−1)/2

(
1− ρ2x2

)1/2
F−1/2
n dx+

ρ

2

∫ 1

0
x(n−3)/2

(
1− ρ2x2

)3/2
F−3/2
n dx

− nρ2n−1

2

∫ 1

0
x(5n−7)/2

(
1− ρ2x2

)3/2
F−3/2
n (1− x) dx. (59)

As before, set y = x2n−1 so that dy = (2n− 1)x2n−2dx = (2n− 1) y
2n−2
2n−1dx = (2n− 1) y1− 1

2n−1dx.
Then, using Fn = 1− ρ2x+ (1− x)x2n−1ρ2n, we have for the first integral in (59)∫ 1

0
x(n−1)/2

(
1− ρ2x2

)1/2
F−1/2
n dx

=
1

2n− 1

∫ 1

0
y
n+1
4n−4

−1
(

1− ρ2y
2

2n−1

)1/2 {(
1− ρ2y

1
2n−1

)
+
(

1− y
1

2n−1

)
yρ2n

}−1/2
dy

=
1

2n− 1

∫ 1

0
y−

3
4

+ 1
2n−2

(
1− ρ2y

2
2n−1

)1/2 {(
1− ρ2y

1
2n−1

)
+
(

1− y
1

2n−1

)
yρ2n

}−1/2
dy.

Since y
b

2n+a = 1 + b
2n+a log y + O

(
n−2

)
and ρ2n =

(
1 + c

n

)2n
= e2c

{
1 +O

(
n−1

)}
, it

follows that∫ 1

0
x(n−1)/2

(
1− ρ2x2

)1/2
F−1/2
n dx

=
1

2n− 1

∫ 1

0
y−

3
4

(
1− ρ2y

2
2n−1

)1/2 {(
1− ρ2y

1
2n−1

)
+
(

1− y
1

2n−1

)
yρ2n

}−1/2
dy
{

1 +O
(
n−1

)}
=

1

2n

∫ 1

0
y−

3
4

{
1− ρ2y

1
2n−1

1− ρ2y
2

2n−1

+
1− y

1
2n−1

1− ρ2y
2

2n−1

yρ2n

}−1/2

dy +O
(
n−2

)
=

1

2n

∫ 1

0
y−

3
4

{
1−

(
1 + 2c

n

) (
1 + 1

2n log y
)

1−
(
1 + 2c

n

) (
1 + 1

n log y
) − 1

2n log y

1−
(
1 + 2c

n

) (
1 + 1

n log y
)yρ2n

}−1/2

dy +O
(
n−2

)
=

1

2n

∫ 1

0
y−

3
4

{
−2c
n −

1
2n log y

−2c
n −

1
n log y

−
1

2n log y

−2c
n −

1
n log y

ye2c

}−1/2

dy +O
(
n−2

)
=

1

2n

∫ 1

0
y−

3
4

{
4c+ log y

4c+ 2 log y
+

log y

4c+ 2 log y
ye2c

}−1/2

dy +O
(
n−2

)
. (60)

The second integral in (59) may be reduced in the same way. Again, setting y = x2n−1,
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with dy = (2n− 1) y1− 1
2n−1dx, and y

b
2n+a = 1 + b

2n+a log y +O
(
n−2

)
, we have∫ 1

0
x(n−3)/2

(
1− ρ2x2

)3/2
F−3/2
n dx

=
1

2n− 1

∫ 1

0
y−

3
4
− 1/4

2n−2

(
1− ρ2y

2
2n−1

)3/2 {(
1− ρ2y

1
2n−1

)
+
(

1− y
1

2n−1

)
yρ2n

}−3/2
dy

=
1

2n

∫ 1

0
y−

3
4

{
1− ρ2y

1
2n−1

1− ρ2y
2

2n−1

+
1− y

1
2n−1

1− ρ2y
2

2n−1

yρ2n

}−3/2

dy +O
(
n−2

)
=

1

2n

∫ 1

0
y−

3
4

{
1−

(
1 + 2c

n

) (
1 + 1

2n log y
)

1−
(
1 + 2c

n

) (
1 + 1

n log y
) − 1

2n log y

1−
(
1 + 2c

n

) (
1 + 1

n log y
)yρ2n

}−3/2

dy +O
(
n−2

)
=

1

2n

∫ 1

0
y−

3
4

{
−2c
n −

1
2n log y

−2c
n −

1
n log y

−
1

2n log y

−2c
n −

1
n log y

ye2c

}−3/2

dy +O
(
n−2

)
=

1

2n

∫ 1

0
y−

3
4

{
4c+ log y

4c+ 2 log y
+

log y

4c+ 2 log y
ye2c

}−3/2

dy +O
(
n−2

)
. (61)

Finally, for the third integral in (59) we have in the same fashion∫ 1

0
x(5n−7)/2

(
1− ρ2x2

)3/2
F−3/2
n (1− x) dx

=
1

(2n− 1)2

∫ 1

0
y

(5n−7)
4n−2

−1+ 1
2n−1

(
1− ρ2y

2
2n−1

)3/2 {(
1− ρ2y

1
2n−1

)
+
(

1− y
1

2n−1

)
yρ2n

}−3/2
log ydy +O

(
n−3

)
=

1

4n2

∫ 1

0
y

(n−3)
4n−2

(
1− ρ2y

2
2n−1

)3/2 {(
1− ρ2y

1
2n−1

)
+
(

1− y
1

2n−1

)
yρ2n

}−3/2
log ydy +O

(
n−3

)
=

1

4n2

∫ 1

0
y

1
4

{
1− ρ2y

1
2n−1

1− ρ2y
2

2n−1

+
1− y

1
2n−1

1− ρ2y
2

2n−1

yρ2n

}−3/2

log ydy +O
(
n−3

)
=

1

4n2

∫ 1

0
y

1
4

{
1−

(
1 + 2c

n

) (
1 + 1

2n log y
)

1−
(
1 + 2c

n

) (
1 + 1

n log y
) − 1

2n log y

1−
(
1 + 2c

n

) (
1 + 1

n log y
)yρ2n

}−3/2

log ydy +O
(
n−3

)
=

1

4n2

∫ 1

0
y

1
4

{
−2c
n −

1
2n log y

−2c
n −

1
n log y

−
1

2n log y

−2c
n −

1
n log y

ye2c

}−3/2

log ydy +O
(
n−3

)
=

1

4n2

∫ 1

0
y

1
4

{
4c+ log y

4c+ 2 log y
+

log y

4c+ 2 log y
ye2c

}−3/2

log ydy +O
(
n−3

)
. (62)

Combining results (60) - (62) gives the following approximation to the binding function
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for ρ = 1 + c
n with c < 0

bn(ρ) = ρ− 3ρ

2

∫ 1

0
x(n−1)/2

(
1− ρ2x2

)1/2
F−1/2
n dx+

ρ

2

∫ 1

0
x(n−3)/2

(
1− ρ2x2

)3/2
F−3/2
n dx

− nρ2n−1

2

∫ 1

0
x(5n−7)/2

(
1− ρ2x2

)3/2
F−3/2
n (1− x) dx

= ρ− 3ρ

4n

∫ 1

0
y−

3
4

{
4c+ log y

4c+ 2 log y
+

log y

4c+ 2 log y
ye2c

}−1/2

dy

+
ρ

4n

∫ 1

0
y−

3
4

{
4c+ log y

4c+ 2 log y
+

log y

4c+ 2 log y
ye2c

}−3/2

dy

+
ρ2n−1

8n

∫ 1

0
y

1
4

{
4c+ log y

4c+ 2 log y
+

log y

4c+ 2 log y
ye2c

}−3/2

log ydy +O
(
n−2

)
. (63)

Observe the sign change in the last term because of the transformation in the integrand
that involves log y, which is negative for y ∈ (0, 1), so the whole expression is negative.
When c→ −∞ the approximation (63) has the reduced form

bn(ρ) = ρ− 3ρ

4n

∫ 1

0
y−

3
4dy +

ρ

4n

∫ 1

0
y−

3
4 +O

(
n−2 +

1

|c|

)
= ρ− ρ

2n

[
y

1
4

1/4

]1

0

+O
(
n−2

)
= ρ− 2ρ

n
+O

(
n−2 +

1

|c|

)
,

as in the case |ρ| < 1. On the other hand, when c = 0 we have

bn(1) = 1− 3

4n

∫ 1

0
y−

3
4

{
1

2
+

1

2
y

}−1/2

dy +
1

4n

∫ 1

0
y−

3
4

{
1

2
+

1

2
y

}−3/2

dy

+
1

8n

∫ 1

0
y

1
4

{
1

2
+

1

2
y

}−3/2

log ydy +O
(
n−2

)
= 1− 3

4n
21/2

∫ 1

0
y−

3
4 {1 + y}−1/2 dy +

23/2

4n

∫ 1

0
y−

3
4 {1 + y}−3/2 dy

+
21/2

4n

∫ 1

0
y

1
4 {1 + y}−3/2 log ydy +O

(
n−2

)
= 1− 1.7814

n
+O

(
n−2

)
,

corresponding to (56). Thus, (63) encompasses both the stationary and unit root cases
at the limits of the domain of definition for c < 0.

(iv) Case ρ = 1 + c
n , c > 0

We start with the local to unity case ρ = 1 + c/n with c > 0 and later consider the
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fixed ρ > 1. The binding function formula for ρ > 1 is

bn(ρ) = ρ+
3ρ

2

∫ ∞
1

x(n−1)/2
(
ρ2x2 − 1

)1/2
G−1/2
n dx

− ρ

2

∫ ∞
1

x(n−3)/2
(
ρ2x2 − 1

)3/2
G−3/2
n dx

− nρ2n−1

2

∫ ∞
1

x(n−5)/2
(
ρ2x2 − 1

)3/2
G−3/2
n (x− 1)x2n−1dx. (64)

We proceed to take each term in turn. As before, set y = x2n−1 so that

dy = (2n− 1)x2n−2dx = (2n− 1) y
2n−2
2n−1dx = (2n− 1) y1− 1

2n−1dx,

and use the expansion y
1

2n−1 = 1 + 1
2n−1 log y + O

(
n−2

)
. Then, using Gn = ρ2x − 1 +

(x− 1)x2n−1ρ2n and for ρ = 1 + c
n with c > 0, the integral in the second term of (64) is∫ ∞

1
x(n−1)/2

(
ρ2x2 − 1

)1/2
G−1/2
n dx

=

∫ ∞
1

x(n−1)/2

{
ρ2x2 − 1

ρ2x− 1 + (x− 1)x2n−1ρ2n

}1/2

dx

=

∫ ∞
1

y
(n−1)/2

2n−1

 ρ2y
2

2n−1 − 1

ρ2y
1

2n−1 − 1 +
(
y

1
2n−1 − 1

)
yρ2n


1/2

dy

(2n− 1) y
2n−2
2n−1

=
1

2n

∫ ∞
1

y−
3
4

{ (
1 + 2c

n

) (
1 + 2

2n log y
)
− 1(

1 + 2c
n

) (
1 + 1

2n log y
)
− 1 + ρ2n

2n y log y

}1/2

dy

=
1

2n

∫ ∞
1

y−
3
4

{
4c+ 2 log y

4c+ log y + ρ2ny log y

}1/2

dy

Use the transformation w = log y so that w ∈ [0,∞) and dy = ewdw, giving

1

2n

∫ ∞
1

y−
3
4

{
4c+ 2 log y

4c+ log y + ρ2ny log y

}1/2

dy

=
1

2n

∫ ∞
0

e
1
4
w

{
4c+ 2w

4c+ w + ρ2nwew

}1/2

dw. (65)
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Proceeding in the same way with the integral in the third term of (64) we have∫ ∞
1

x(n−3)/2
(
ρ2x2 − 1

)3/2
G−3/2
n dx

=

∫ ∞
1

x(n−3)/2

{
ρ2x2 − 1

ρ2x− 1 + (x− 1)x2n−1ρ2n

}3/2

dx

=

∫ ∞
1

y
(n−3)/2

2n−1

 ρ2y
2

2n−1 − 1

ρ2y
1

2n−1 − 1 +
(
y

1
2n−1 − 1

)
yρ2n


3/2

dy

(2n− 1) y
2n−2
2n−1

=
1

2n

∫ ∞
1

y−
3
4

{ (
1 + 2c

n

) (
1 + 2

2n log y
)
− 1(

1 + 2c
n

) (
1 + 1

2n log y
)
− 1 + ρ2n

2n y log y

}3/2

dy
{

1 +O
(
n−1

)}
=

1

2n

∫ ∞
1

y−
3
4

{
4c+ 2 log y

4c+ log y + ρ2ny log y

}3/2

dy
{

1 +O
(
n−1

)}
=

1

2n

∫ ∞
0

e
1
4
w

{
4c+ 2w

4c+ w + ρ2nwew

}3/2

dw. (66)

Finally, the integral in the fourth term of (64) is∫ ∞
1

x(n−5)/2
(
ρ2x2 − 1

)3/2
G−3/2
n (x− 1)x2n−1dx∫ ∞

1
x(n−5)/2

{
ρ2x2 − 1

ρ2x− 1 + (x− 1)x2n−1ρ2n

}3/2

(x− 1)x2n−1dx

=

∫ ∞
1

y
(n−5)/2

2n−1

 ρ2y
2

2n−1 − 1

ρ2y
1

2n−1 − 1 +
(
y

1
2n−1 − 1

)
yρ2n


3/2
(
y

1
2n−1 − 1

)
ydy

(2n− 1) y
2n−2
2n−1

=
1

2n

∫ ∞
1

y
1
4

{ (
1 + 2c

n

) (
1 + 2

2n log y
)
− 1(

1 + 2c
n

) (
1 + 1

2n log y
)
− 1 + ρ2n

2n y log y

}3/2(
1

2n
log y

)
dy
{

1 +O
(
n−1

)}
=

(
1

2n

)2 ∫ ∞
1

y
1
4

{
4c+ 2 log y

4c+ log y + ρ2ny log y

}3/2

log ydy
{

1 +O
(
n−1

)}
=

(
1

2n

)2 ∫ ∞
0

e
5
4
w

{
4c+ 2w

4c+ w + ρ2nwew

}3/2

wdw
{

1 +O
(
n−1

)}
. (67)

Combining (65) - (67) in (64) we get for ρ = 1 + c
n with c > 0

bn(ρ) = ρ+
3ρ

4n

∫ ∞
0

e
1
4
w

{
4c+ 2w

4c+ w + ρ2nwew

}1/2

dw

− ρ

4n

∫ ∞
0

e
1
4
w

{
4c+ 2w

4c+ w + ρ2nwew

}3/2

dw

− ρ2n−1

8n

∫ ∞
0

e
5
4
w

{
4c+ 2w

4c+ w + ρ2nwew

}3/2

wdw +O
(
n−2

)
.
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Hence the bias function to O
(
n−1

)
in this case of local to unity on the explosive side of

unity is

bn(1 +
c

n
) = 1 +

c

n
+

3

4n

∫ ∞
0

e
1
4
w

{
4c+ 2w

4c+ w + ρ2nwew

}1/2

dw

− 1

4n

∫ ∞
0

e
1
4
w

{
4c+ 2w

4c+ w + ρ2nwew

}3/2

dw

− ρ2n

8n

∫ ∞
0

e
5
4
w

{
4c+ 2w

4c+ w + ρ2nwew

}3/2

wdw +O
(
n−2

)
. (68)

(v) Case |ρ| > 1
We now turn to the case of fixed ρ > 1. The relevant bias expression is from (54)

bn(ρ) = ρ+
3ρ

2

∫ ∞
1

x(n−1)/2
(
ρ2x2 − 1

)1/2
G−1/2
n dx

− ρ

2

∫ ∞
1

x(n−3)/2
(
ρ2x2 − 1

)3/2
G−3/2
n dx

− nρ2n−1

2

∫ ∞
1

x(n−5)/2
(
ρ2x2 − 1

)3/2
G−3/2
n (x− 1)x2n−1dx.

We examine the order of magnitude of each term in turn as n→∞. For the first term∫ ∞
1

x(n−1)/2
(
ρ2x2 − 1

)1/2
G−1/2
n dx =

∫ ∞
1

x(n−1)/2

{
ρ2x2 − 1

ρ2x− 1 + (x− 1)x2n−1ρ2n

}1/2

dx

=
1

ρn

∫ ∞
1

x(n−1)/2

xn−1/2

 ρ2x2 − 1

(x− 1) + ρ2x−1
x2n−1ρ2n


1/2

dx

≤ B

ρn

∫ ∞
1

1

xn/2
dx = O

(
n−1ρ−n

)
.

In a similar way, the second term is∫ ∞
1

x(n−3)/2
(
ρ2x2 − 1

)3/2
G−3/2
n dx =

∫ ∞
1

x(n−3)/2

{
ρ2x2 − 1

ρ2x− 1 + (x− 1)x2n−1ρ2n
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= O
(
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)
.
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The third term is

nρ2n−1

2

∫ ∞
1

x(n−5)/2
(
ρ2x2 − 1

)3/2
G−3/2
n (x− 1)x2n−1dx

=
nρ2n−1

2

∫ ∞
1

x(n−5)/2

{
ρ2x2 − 1

ρ2x− 1 + (x− 1)x2n−1ρ2n

}3/2

(x− 1)x2n−1dx

=
nρ−n−1

2

∫ ∞
1

x(n−5)/2+2n−1

x3n−3/2

 ρ2x2 − 1

(x− 1) + ρ2x−1
x2n−1ρ2n


3/2

(x− 1) dx

=
nρ−n−1

2

∫ ∞
1

1

xn/2+2

 ρ2x2 − 1

(x− 1) + ρ2x−1
x2n−1ρ2n


3/2

(x− 1) dx

= O
(
ρ−n

)
,

It follows that bn(ρ) = ρ + O (ρ−n) , showing that the bias is exponentially small (and
negative) for ρ > 1. A similar result holds when ρ < −1, in which case the bias is
exponentially small and positive.
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